GATE Civil Engineering
+1 vote

Population of state $X$ increased by $x\%$  and the population of state $Y$ increased by $y\%$ from $2001$ to $2011$. Assume that $x$ is greater than $y$. Let $P$ be the ratio of the population of state $X$ to state $Y$ in a given year. The percentage increase in $P$ from $2001$ to $2011$ is ________

  1. $\dfrac{x}{y} \\$
  2. $x-y \\$
  3. $\dfrac{100(x-y)}{100+x} \\$
  4. $\dfrac{100(x-y)}{100+y}$
in Numerical Ability by (2.8k points)
edited by

1 Answer

0 votes

Answer: OPTION D

Let ratio of population X to population Y (Pold) = $\frac{Px}{Py}$ = P

New Population of X = $Px+ \frac{(x*Px)}{100}$  = $(1+\frac{x}{100})Px$

New Population of Y = $Py+ \frac{(y*Py)}{100}$  = $(1+\frac{y}{100})Py$

Ratio of new population of x and y (Pnew) =$\frac{(100+x)Px }{(100+y)Py }$  = $\frac{(100+x)P}{(100+y)}$

Percentage increase in P = (Pnew -Pold)/Pold  = $\frac{ \frac{(100+x)P }{(100+y)} -P }{P}$ $\times 100$   

                                                                             =($\frac{(100+x) }{(100+y)}$ -1) $\times 100$ 

                                                                             = $\frac{x-y}{100+y} \times 100$

                                                                              =$100\frac{(x-y)}{100+y}$

by (140 points)
Answer:
Welcome to GATE Civil Q&A, where you can ask questions and receive answers from other members of the community.
Top Users Sep 2020
  1. Vishwajeet Chandra

    110 Points

  2. Milicevic3306

    10 Points

1,042 questions
95 answers
26 comments
44,031 users