in Quantitative Aptitude edited by
1 vote
1 vote

Two straight lines pass through the origin $(x_{0}, y_{0}) = (0, 0)$. One of them passes through the point $(x_{1}, y_{1}) = (1, 3)$ and the other passes through the point $(x_{2}, y_{2}) = (1, 2)$.

What is the area enclosed between the straight lines in the interval $[0, 1]$ on the $x$-axis?

  1. $0.5$
  2. $1.0$
  3. $1.5$
  4. $2.0$
in Quantitative Aptitude edited by
by
11.6k points

1 Answer

0 votes
0 votes

Let’s first draw the diagram.

The area enclosed between the straight lines in the interval $[0,1]$ on the $x$-axis $ = \text{area of}\;\triangle \text{ACO} – \text{area of}\;\triangle \text{BCO}$

$= \dfrac{1}{2} \times 1 \times 3\; – \dfrac{1}{2} \times 1 \times 2 = \dfrac{1}{2}(3-2) = \dfrac{1}{2} = 0.5\;\text{unit}^{2}.$

Correct Answer $:\text{A}$

$\textbf{PS:}$ The area of triangle ${\color{Green}{ = \dfrac{1}{2} \times \text{Base} \times \text{Height}}}$

12.0k points
Answer:
Welcome to GATE Civil Q&A, where you can ask questions and receive answers from other members of the community.
Top Users Oct 2022