edited by
0 votes
0 votes

The theoretical aerobic oxidation of biomass $\left(\mathrm{C}_5 \mathrm{H}_7 \mathrm{O}_2 \mathrm{~N}\right)$ is given below:

$\mathrm{C}_5 \mathrm{H}_7 \mathrm{O}_2 \mathrm{~N}+5 \mathrm{O}_2 \rightarrow 5 \mathrm{CO}_2+\mathrm{NH}_3+2 \mathrm{H}_2 \mathrm{O}$

The biochemical oxidation of biomass is assumed as a first-order reaction with a rate constant of $0.23 / \mathrm{d}$ at $20^{\circ} \mathrm{C}$ (logarithm to base $e$ ). Neglecting the second-stage oxygen demand from its biochemical oxidation, the ratio of $\mathrm{BOD}_5$ at $20^{\circ} \mathrm{C}$ to total organic carbon $\text{(TOC)}$ of biomass is_______________ (round off to two decimal places).

[Consider the atomic weights of $\mathrm{C}, \mathrm{H}, \mathrm{O}$ and $\mathrm{N}$ as $12 \mathrm{~g} / \mathrm{mol}, 1 \mathrm{~g} / \mathrm{mol}, 16 \mathrm{~g} / \mathrm{mol}$ and $14 \mathrm{~g} / \mathrm{mol}$, respectively]

edited by

Please log in or register to answer this question.

Answer: