Milicevic3306
asked
in Probability and Statistics
Mar 28, 2018
retagged
Mar 11, 2021
by Lakshman Patel RJIT

1 vote

If $f(x)$ and $g(x)$ are two probability density functions,

$f(x) = \begin{cases} \dfrac{x}{a}+1 & :-a \leq x < 0 \\ -\dfrac{x}{a}+1 & : 0 \leq x \leq a \\ 0 & :\text{otherwise} \end{cases}$

$g(x) = \begin{cases} -\dfrac{x}{a} & :-a \leq x < 0 \\ \dfrac{x}{a} & : 0 \leq x \leq a \\ 0 & :\text{otherwise} \end{cases}$

Which one of the following statements is true?

- Mean of $f(x)$ and $g(x)$ are same; Variance of $f(x)$ and $g(x)$ are same
- Mean of $f(x)$ and $g(x)$ are same; Variance of $f(x)$ and $g(x)$ are different
- Mean of $f(x)$ and $g(x)$ are different; Variance of $f(x)$ and $g(x)$ are same
- Mean of $f(x)$ and $g(x)$ are different; Variance of $f(x)$ and $g(x)$ are different