in Ordinary Differential Equation (ODE) recategorized by
0 votes
0 votes

The respective expressions for complementary function and particular integral part of the solution of the differential equation $\dfrac{d^4y}{dx^4}+3 \dfrac{d^2y}{dx^2} = 108x^2$ are

  1. $\lfloor c_1+c_2x+c_3 \sin \sqrt{3}x+c_4 \cos \sqrt{3} x \rfloor$ and $\lfloor 3x^4 – 12x^2 +c \rfloor$
  2. $\lfloor c_2x+c_3 \sin \sqrt{3}x+c_4 \cos \sqrt{3} x \rfloor$ and $\lfloor 5x^4 – 12x^2 +c \rfloor$
  3. $\lfloor c_1+c_3 \sin \sqrt{3}x+c_4 \cos \sqrt{3} x \rfloor$ and $\lfloor 3x^4 – 12x^2 +c \rfloor$
  4. $\lfloor c_1+c_2x+c_3 \sin \sqrt{3}x+c_4 \cos \sqrt{3} x \rfloor$ and $\lfloor 5x^4 – 12x^2 +c \rfloor$
in Ordinary Differential Equation (ODE) recategorized by
11.9k points

Please log in or register to answer this question.

Answer:
Welcome to GATE Civil Q&A, where you can ask questions and receive answers from other members of the community.
Top Users Oct 2022